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Detection of eye contact with deep neural networks
is as accurate as human experts
Eunji Chong 1✉, Elysha Clark-Whitney2, Audrey Southerland1, Elizabeth Stubbs1, Chanel Miller1,
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Eye contact is among the most primary means of social communication used by humans.

Quantification of eye contact is valuable as a part of the analysis of social roles and com-

munication skills, and for clinical screening. Estimating a subject’s looking direction is a

challenging task, but eye contact can be effectively captured by a wearable point-of-view

camera which provides a unique viewpoint. While moments of eye contact from this view-

point can be hand-coded, such a process tends to be laborious and subjective. In this work,

we develop a deep neural network model to automatically detect eye contact in egocentric

video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep

convolutional network using a dataset of 4,339,879 annotated images, consisting of

103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism

Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18

validation subjects, and its performance is on par with 10 trained human coders with a mean

precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis

by serving as a scalable, objective, and accessible tool for clinicians and researchers.
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Gaze behavior is a key foundation of face-to-face social
interaction. Eye contact, the act of looking another person
in the eyes, is one of the earliest social skills to emerge in

development1,2, and studies have shown that infants are tuned to
looking at faces from birth3,4. Eye contact serves multiple
important functions in social communication, including the
establishment and recognition of relationships between partners
and the expression of interest and attentiveness5,6. Moreover, it is
a core component of joint attention, in coordination with other
gestures7, which is an important developmental milestone. Aty-
pical use of eye contact and abnormal gaze patterns are often part
of a list of red flags for numerous medical and/or psychiatric
conditions, including autism spectrum disorder (ASD)8,9, Fragile
X syndrome10, ADHD11, Williams Syndrome12, social anxiety/
behavioral inhibition13, and oppositional defiant disorder14. In
particular, decreased eye contact is included in the DSM-5
diagnostic criteria for ASD15, and is also a focus of early screening
and treatment.

As a result of the critical importance of gaze, a variety of
technologies have been developed to automate the measurement
of gaze behavior, of which eye tracking is the best known
example. Conventional monitor-based eye tracking is unsuitable
for measuring the contingent real-world aspects of social gaze
during face-to-face interactions. While wearable eye trackers can
be utilized to measure gaze behavior in adults16–18 and
infants19,20, they are both expensive and burdensome to the
subject. The need to wear and calibrate eye tracking hardware can
be a tremendous challenge to subjects with compliance, distrac-
tion or fatigue issues, and this can affect both the yield and quality
of the data. Infants, young children, and individuals with health
problems are examples of subject groups that are likely to
have such difficulties. Moreover, since the eye tracker only pro-
vides the point of gaze in a captured video recording, manual
region of interest annotation must be performed on the video in
order to identify the gaze targets, limiting the scalability of the
approach.

We have pioneered a novel, scalable, low-burden approach to
automatically detecting moments of eye contact between indivi-
duals during face-to-face interactions21, illustrated in Fig. 1. The
interactive partner wears a low-cost pair of glasses with a point-
of-view (PoV) camera embedded in the bridge, which serves as a
video recorder. By virtue of its placement, the subject will be
looking directly toward the camera any time they are making eye
contact with the interactive partner, facilitating automatic
detection of those looks toward the camera using computer vision
methods. In our approach, the subject is completely unencum-
bered and the burden on the interactive partner is low since the
glasses are light-weight and unobtrusive. Note that in our
experiments we remove the lenses of the glasses to provide the
subject with an unobstructed view of the interactive partner’s
eyes.

While human raters can achieve levels of agreement above 90%
when identifying instances of eye contact in PoV videos22,23, the
accuracy of automated detection approaches achieved in prior
works21,24 is well below this level of performance, making auto-
matic coding unusable by researchers and practitioners as a
measurement tool. This paper addresses this challenge by
exploring three directions. First, we hypothesize that modern
deep learning architectures can leverage a large dataset of 4.7M
human-annnotated eye contact events to achieve higher accuracy.
However, while our dataset is large by any standard, it only
contains around 100 unique subjects. In contrast, datasets for face
detection, recognition, and other tasks, which have been shown to
yield high performance when using deep models25–27, contain
orders of magnitude more variability. Therefore, our second
hypothesis is that we can close this gap by using task transfer
learning from additional datasets that model the relationship
between head pose and eye gaze direction, which is central to our
task. Transfer learning is based on leveraging representations
learned for one task to improve performance on a related task28.
Third, we hypothesize that the frequency and duration of
moments of eye contact identified by our automated method will

Fig. 1 Overview of the approach. Wearable glasses with a small outward-facing camera embedded in the bridge are used to record the face of the camera
wearer’s interactive partner. By virtue of its placement, gaze during eye contact is directed toward the camera, and is captured in video, enabling automated
detection. Due to its ease of use, the approach can be widely deployed in a variety of settings, as illustrated in the figure, for which eye tracking may be
infeasible due to cost, burden, compliance, or distraction issues.
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correlate with measures of social impairment among individuals
with ASD. Establishing this hypothesis validates the feasibility of
fully automated eye contact coding using our approach.

Results
Representativeness of validation set. In t-tests and χ2 tests that
were run to confirm that subjects included in the validation set
are representative of the overall sample, the validation set did not
differ from the rest of the sample in terms of diagnostic group
(χ= 0.09, p= 0.77), gender (χ= 3.62, p= 0.06), age (t= 0.49,
p= 0.62, M= 37.72 vs. 36.17, SD= 13.10 vs. 12.15), race
(χ= 2.70, p= 0.61), ethnicity (χ= 0.29, p= 0.86), or severity of
social impairment among the ASD group (t= 1.18, p= 0.24,
M= 7.50 vs. 7.81, SD= 1.51 vs. 2.01). Detailed demographic and
descriptive statistics for the validation sample are reported in the
validation columns of Table 1.

Frame-level accuracy. The precision and recall (PR) performance
of the deep learning model is illustrated as a blue PR curve in
Fig. 2. Each yellow dot in the figure gives the PR for one of the ten
expert raters. This PR is obtained by comparing an expert’s rat-
ings to the consensus ratings of the other nine experts (effectively
treating the nine experts’ consensus as ground truth). The mean
rater (green diamond) is the average of the PRs for the human
raters. The red diamond gives the PR of the model following
smoothing (post-processing). In Fig. 2, (a) shows the aggregate
PR curve on all 18 validation sessions, and (b), (c), (d) show this
curve split by protocol type, gender, and diagnostic category,
respectively.

At testing time (including the coder-level reliability and study
reproducibility experiments), we used a decision threshold of 0.9
in order to predict the presence or absence eye contact in each
frame based on the softmax output of the deep model classifier. In

addition, we performed temporal smoothing as a post-processing
step in order to reduce noise caused by unwanted events such as
face detection failure, motion blur, and eye blinks, we remove
outliers and merge short segments through a sliding window
scheme using moving average. The classifier decision threshold
and the window sizes for outlier removal (5) and merging (6)
were chosen via grid search on a held-out training sample, by
maximizing detection accuracy while minimizing the event-level
eye contact count difference between the estimate and human
coding. Note that it achieves slightly higher precision than the
mean rater for the same recall. Additionally, we analyzed the
impact of face detection on eye contact retrieval accuracy, which
we report in the Supplementary Table 1.

Table 2 quantifies the benefits of smoothing and transfer
learning. Comparing the F1 scores demonstrates the equivalence
of the mean rater and deep model performance. Comparing the
third and fourth column, we see that smoothing gives an F1 score
increase of 0.01. Similarly, removing transfer learning in the fifth
row causes a decrease in F1. We note that the multi-task learning
approach from ref. 24, presented in column 6, causes a drop of
0.034 in F1 relative to the transfer learning result in column 3.
These results validate the superiority of transfer learning over
multi-task learning for this problem.

The average precision can be interpreted as the area under the
PR curve, and gives an overall measure of the effectiveness of the
classifier without the need to select a particular operating point.
In Table 2, we report results for specific operating points. Here we
provide the average precision for the classifier without perform-
ing smoothing: ESCS 0.948, BOSCC 0.959, and combined 0.956.

Reliability with human raters. Inter-rater reliability is measured
by Cohen’s κ for all pairs of human coders and provides evidence
for the reliability of the raters. Using the combined dataset, the

Table 1 Demographics and descriptive statistics.

TD young children TD young children ASD young children ASD young children ASD child/adolescent

Total Validation Total Validation

N 55 9 66 9 15
Males 36 (65%) 5 (56%) 55 (83%) 5 (56%) 12 (80%)
Age (months) 27.45 (5.84) 28.78 (5.87) 44.00 (11.11) 46.67 (12.25) 95.56 (32.60)
Score

CSS total N/A N/A 7.97 (2.19) 7.5 (1.41) 7.43 (1.74)
CSS SA N/A N/A 7.49 (2.30) 7.5 (1.51) 7.64 (1.74)
CSS RRB N/A N/A 8.19 (1.76) 7.25 (1.83) 6.79 (2.83)
CBCL total T score 43.16 (9.02) 45.43 (10.24) 58.05 (15.35) 56.13 (13.28) 59.00 (8.88)

Race
White/Caucasian (%) 60 89 61 33 60
Black/African

American (%)
22 11 4 11 0

Asian/Pacific Islander (%) 0 0 15 33 7
More than one race (%) 13 0 14 11 26
Other/unknown (%) 5 0 6 11 7

Hispanic/Latino ethnicity 4 (7%) 0 (0%) 15 (23%) 3 (33%) 3 (20%)
Maternal education

Some high school 1 1 0 0 0
High school diploma/GED 3 0 3 0 2
Some college 8 0 4 1 0
College/technical degree 24 4 28 3 5
Graduate school degree 19 4 30 5 8
Unknown 0 0 1 0 0

Age, CSS, and CBCL scores expressed as mean (standard deviation). Higher scores indicate more significant impairment/problem behavior. For young children samples, total sample and its validation
sub-sample are both reported.
CSS total: calibrated severity score from ADOS; CSS SA: ADOS calibrated severity score for social affect; CSS RRB: ADOS calibrated severity score for restricted and repetitive behaviors; CBCL total T
score: score for internalizing and externalizing problem behavior.
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average human–human κ is mhh= 0.888 (with 0.8 as the standard
cut-off for reliability). Comparison of the eye contact detection
model with human raters also indicates reliability, with an aver-
age human–detector κ of mhd= 0.891. This demonstrates that
adding the model-based detector as an additional “rater” to the
pool of human coders preserves reliability, reinforcing the claim
that the model is equivalent to a human expert. This hypothesis
can be tested statistically using two one-sided tests. For the
combined dataset, we are able to reject H0: mhd−mhh <−Δ at
p= 0.05 and accept H1 that the algorithm is as reliable as human
annotators, with the equivalence boundary Δ as low as 0.025,
which is the standard deviation of the human κ’s. We choose this
bound as the Smallest Effect Size of Interest (SESOI)29 as any
equivalence range smaller than this is too small to matter.

Figure 3 illustrates the Cohen’s κ statistics for the human–
human and human–detector comparison, and are summarized in
Supplementary Table 2.

In the standard two one-sided tests, sample means from
the two groups are compared for both sides of inequalities.
However, we are only interested in testing if the detector is not
less reliable as human. Therefore, the null and alternative

hypotheses tested in this analysis is the following. As shown in
Supplementary Table 3, we are able to reject the null hypothesis
H0 at p= 0.05 for all cases.

H0 : mhd �mhh <�Δ ð1Þ

H1 : �Δ<mhd �mhh ð2Þ

Reproducibility of prior studies. Supplementary Fig. 1 provides
a visualization of the eye contact frequency and duration rate for
each subject, comparing the detection model and human raters.
The figure demonstrates good qualitative agreement across sub-
jects, with the model estimates consistently falling within the
range defined by the human coders. Note that some subjects are
harder to rate, resulting in a greater spread of measures. We
replicated the hypotheses tests for significance from the prior
studies using the automated coding results. Automated findings
were identical to those obtained from human coding.
Table 4 summarizes the findings for study30, with significance for
the effect of context on eye contact duration and frequency, but

Table 2 Frame-level performance comparisons.

Metric Mean rater Deep model Deep model Deep model Multi-task learning24

(smoothed) (not smoothed) Without transfer learning
(smoothed)

With ResNet (smoothed)

F1 0.932 0.940 0.930 0.916 0.906
Precision 0.918 0.936 0.924 0.917 0.924
Recall 0.946 0.943 0.937 0.915 0.890

Performance without smoothing (fourth column) is reported at the maximum F1 score along the PR curve, with associated PR. In the sixth column, we replaced AlexNet in ref. 24 with ResNet for a fair
comparison.
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Fig. 2 Precision and recall (PR) of deep learning model and human raters. The blue line is the PR curve for the model, zoomed into the range 0.5–1.0.
Human rater data are presented as mean values ± SD. Improved model PR (red diamond) is obtained by temporally smoothing the model output. The PR
for each of the ten expert raters (yellow dots) is obtained by comparing an expert's ratings to the consensus ratings of the other nine experts. a PR curve on
all 18 validation sessions. The model (red diamond) achieves higher precision than the average of the expert raters (green diamond) for the same recall.
The model PR (red diamond) lies within one standard deviation (green error bars) of the mean rater, and both the model and the mean rater have similar
F1 scores. Therefore, we conclude that the deep learning model exhibits comparable performance to expert human raters. b PR curves computed separately
for the BOSCC (top) and the ESCS protocol (bottom). c PR curves computed separately for male (top) and female (bottom) samples. d PR curves
computed separately for TD (top) and ASD (bottom) samples. In all cases, model PR lies within one SD of the mean rater.
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not for the effects of time or time–context interaction. Table 3
and Fig. 4 give the results for study mentioned in ref. 23. Note that
all of the subjects used in this analysis were excluded from the
model training set.

Correlation analysis. For individuals with ASD, ADOS CSS SA
demonstrated a relation with frequency and duration of auto-
matically measured direct gaze during the ESCS (n= 45; fre-
quency: r=−0.41, p < 0.01; duration: r=−0.36, p < 0.05) and
during the BOSCC (n= 58; frequency: r=−0.26, p < 0.05;
duration: r=−0.29, p < 0.05), which was mostly driven by a
small number of subjects with low social affect severity scores.
Severity of overall social symptoms during the BOSCC (BOSCC
SA) demonstrated a strong correlation with both frequency and
duration, illustrated in Supplementary Fig. 2 (n= 25; frequency:
r=−0.75, p < 0.001; duration: r=−0.78, p < 0.001).

Discussion
This study provides multiple, converging sources of evidence that
a deep learning model can detect moments of eye contact in PoV

camera video with reliability equivalent to expert human raters.
Our model enables the scalable measurement of eye contact
during face-to-face interactions. Our findings suggest that it is
now feasible to use automated analysis as a substitute for human
coding in application domains ranging from autism23,30 to job
interviews31,32. We evaluated our method on a diverse dataset
containing young children and adolescents from both typical and
ASD populations. We believe these are the first findings of
equivalence in PR between an automated eye contact detector and
human raters.

We now summarize the evidence supporting equivalence
between the deep model and expert raters. First, frame-level PR
performance for the combined dataset, illustrated in Fig. 2,
demonstrates that the smoothed deep model result (red diamond)
achieves higher precision than the mean human rater (green
diamond) at the same recall. Note also that both the red diamond
and the unsmoothed PR curve (in blue) lie within one
standard deviation (green error bars) of the mean rater.
Second, reliability analysis provides additional evidence to com-
plement the PR analysis results. Treating the deep model as an
additional rater results in human–detector reliability of 0.891,
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Fig. 4 Average duration of eye contact during conversation and interactive play in child and adolescent samples (n= 15), measured at time 1 and time 2.
a based on human coding, b based on automated coding. Data are presented as mean values ± SEM.
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Fig. 3 Pairwise Cohen’s kappa distributions among all human pairs and human–algorithm pairs, represented as box plot. a 18 validation sessions, b ESCS,
c BOSCC. Generally, kappa scores above 0.8 are considered an almost perfect agreement. On all sessions annotated by ten human experts, agreements
among humans and agreements between each human and algorithm are similar in terms of kappa values.
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while human–human reliability was 0.888. The distribution of
kappas is illustrated in Fig. 3. The hypothesis that the deep model
is as reliable as human raters was examined using two one-sided
statistical tests and found to hold with an equivalence threshold
as low as 0.025. The third source of evidence comes from cor-
relation analysis between eye contact frequency and duration and
ASD symptom severity. We would expect increased severity to be
negatively correlated with rates of eye contact, and this is born
out in Supplementary Fig. 2 which illustrates a strong negative
correlation between automatically derived eye contact measures
and the BOSCC Social Affect (BOSCC SA) scores. Weaker cor-
relation was found between the derived measures and the ADOS
CSS SA scores. The fourth source of evidence comes from a
reproducibility study which asks whether the findings from two
recently published studies of eye contact in autism continue to
hold if automatically derived measures are used in place of expert
ratings. Tables 3, 4 and Fig. 4 demonstrate that all findings hold,
providing direct evidence for the feasibility of using automatically
derived eye contact measures in developmental studies.

An additional contribution of this work is to explore the
relative merits of transfer learning and multi-task learning
approaches in learning effective models for eye contact. As shown
in Table 2, the proposed transfer learning approach that first
learns 3D head pose and gaze and then learns eye contact is
superior to both the previously proposed multi-task approach24

that simultaneously learns head pose and eye contact and a
baseline method that simply learns eye contact without learning
3D head pose models. Note that if we were determining eye

contact using an external room camera, then the estimation of
head pose and gaze angle in 3D would be vitally important to
determine where the subject is looking in space. By locating the
camera on the subject, we reduce this global 3D estimation task to
the much simpler task of assessing gaze relative to the coordinate
frame of the camera. Nonetheless, the need to make angular
determinations may explain why pretraining on an explicit 3D
estimation task leads to improved performance.

We briefly review relevant prior work to place our contribution
in context. First, a variety of recent works have demonstrated the
feasibility of using deep learning to achieve expert level analysis of
biomedical data33 for detecting and classifying clinical conditions
such as diabetic retinopathy34, skin cancer35, malignant mam-
mographic lesions36, bone fracture37, and atrial fibrillation38. In
contrast, only a few prior works have explored the automated
analysis of social behaviors in clinical contexts such as autism.
Early works on automatically analyzing social behaviors39–42

predated the development of deep learning technology and did
not address the issue of expert level performance. Prior work on
automatically measuring “response to name” behaviors43,44

included both ASD and typical samples and assessed the agree-
ment with expert human raters, but did not address naturalistic
face-to-face social interactions.

Marinoiu et al.45 use deep learning models to analyze inter-
actions between children with ASD and a robot therapist, but do
not address expert-level performance. Note that none of these
prior works addressed the assessment of eye contact. A final line
of related work uses machine learning tools to improve the

Table 4 Original and reproduced statistical tests of ref. 30.

Manual coding Manual coding Automated coding Automated coding

p-Value Effect size p-Value Effect size

Cross-group: TD (n = 38) vs. ASD (n = 21),
Finding 1

0.001* 0.36 0.007* 0.32

Cross-group: TD (n = 38) vs. ASD (n = 21),
Finding 2

0.01* 0.26 0.02* 0.25

Cross-group: TD (n = 38) vs. ASD (n = 21),
Finding 3

0.06 0.06

Within-group: TD (n = 38), Finding 4 <0.001* 0.92 1.01e−7* 0.84
Within-group: TD (n = 38), Finding 5 >0.1 0.421
Within-group: ASD (n = 21), Finding 6 <0.001* 0.53 0.007* 0.54
Within-group: ASD (n = 21), Finding 7 >0.1 0.293

Independent two-group Mann–Whitney U test is used in cross-group analysis and Wilcoxon Signed-Rank test is used for within-group analysis. Effect sizes are calculated using z statistics. Tests are one-
sided. Finding 1: TD more EC during toy inactive than ASD. Finding 2: TD more EC in child possession than ASD. Finding 3: TD more EC during toy active than ASD. Finding 4: More EC during toy inactive
than active. Finding 5: More EC in examiner possession than in child possession. Finding 6: More EC during toy inactive than active. Finding 7: More EC in examiner possession than in child possession.
EC eye contact.
*Statistically significant at p= 0.05.

Table 3 Original and reproduced statistical tests of ref. 23.

Manual coding Manual coding Automated coding Automated coding

p-Value Effect size p-Value Effect size

Duration: effect of context <0.001* 1.99 1.7e−07* 1.57
Duration: effect of time >0.9 0.84
Duration: interaction of time and context >0.7 0.839
Frequency: effect of context <0.001* 1.48 1.2e−07* 1.59
Frequency: effect of time >0.9 0.82
Frequency: interaction of time and
context

>0.7 0.85

Percent duration and rate of eye contact during interactive play and conversation across the two time points were compared in 2 (context: play, conversation) by 2 (time: T1, T2) ANOVAs (n= 15). Effect
sizes are calculated using Cohen’s d.
*Statistically significant at p= 0.05.
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usability of conventional eye tracking technology by improving
robustness to head movements and minimizing the need for
calibration46–48. While works such as those mentioned in ref. 46

use deep learning to analyze gaze, they focus on the case of gaze
to screens or displays. We believe this is the first work to
demonstrate human level performance in automatically assessing
a social behavior in a naturalistic face-to-face interaction context.

While the focus of this work has been on the assessment of eye
contact in interactions between an unencumbered child and an
examiner, our technology could also be applied to the analysis of
face-to-face interactions between adults in which each subject is
wearing video recording glasses. Additional applications in clin-
ical and social psychology16–20,49 could potentially benefit from
this approach. Moreover, these methods can also support the
development of social intelligence for robots, enabling them to
interact naturally with people using nonverbal social signals.
Mutual gaze and joint attention have been found to have a critical
role in conversation, narration, collaboration, and manipulation
tasks between humans and robots50–52. Our analysis shows that
our model could cover the common face-to-face interaction
distance ranges (Supplementary Fig. 3). We release the trained
models and software from this work to facilitate such future work.

Methods
Dataset overview. The dataset used in this study was collected at two institutions
between 2015 and 2018. Neurotypical subjects were recruited at the Georgia Tech
Child Study Lab in Atlanta, GA (GT), and subjects with ASD were recruited
through the Center for Autism and the Developing Brain in White Plains, NY
(CADB). All caregivers provided written consent and the Georgia Institute of
Technology and Weill Cornell Medicine IRBs approved the study.

Data collection setup. Each subject participated in two separate play interactions
with a trained examiner. These play interactions, described in more detail below,
have been designed and widely used in the psychology research community to elicit
nonverbal communication behaviors that are present in typical development, but
are often less prevalent in children with autism. Interactions took place at a table
with the subject sitting across from the examiner, either on their parent’s lap or
independently, in order to facilitate data collection. The examiner wore a pair of
commercially available camera glasses—Pivothead Kudu (specifications: 1080p
video resolution, 30 fps, 3.5-mm-wide angle focal-length, 77° field-of-view)—that
provided continuous high resolution capture of the subject’s face. The lenses were
removed from the glasses to provide an unobstructed view of the examiner’s eyes.
A stationary camcorder mounted on a tripod was positioned to capture a holistic
view of the scene, including the table and all subjects. Our method does not require
any camera calibration.

Play interaction 1: Early Social Communication Scales. The Early Social Commu-
nication Scales (ESCS)53 is a semi-structured interaction in which the examiner
presents a series of social presses involving toys in order to elicit nonverbal
communication behaviors (e.g., use of pointing, reaching or eye contact to initiate
joint attention or to request a toy). Administration of the ESCS was slightly
modified for the study; as eye contact, rather than other social communication
behaviors, was the main focus of the current study, ESCS administration was
modified in order to elicit more instances of direct gaze. For example, for items that
require the child to make a bid to the examiner in order to obtain the toy,
examiners would give the toy only when the child made eye contact, not in
response to other bids such as pointing or verbally asking. The exception was if the
child lost interest in the toy or became agitated prior to making eye contact, the
examiner would give the child the toy without requiring any bid. Administration
was also modified to remove materials that are meant to be used close to the
examiner’s face (i.e., hat, comb, and glasses), to prevent ambiguity as to whether the
child is looking at the examiner’s eyes or at the toy. The ESCS was administered to
children 60 months of age and younger.

Play interaction 2: Brief Observation of Social Communication Change. The Brief
Observation of Social Communication Change (BOSCC)54 is a naturalistic play-
based interaction between the subject and their interaction partner. Subjects in this
study completed a modified version of the BOSCC in which they sat at the table
rather than on the floor. The BOSCC consisted of two, 4-min segments of free play
with toys selected by the child that were followed by two, 2-min segments of snack
or conversation, depending on the age of the subject. For the play segments, the
subject was presented with a box of toys and asked to select one toy. If the subject
did not select a toy, the examiner selected one for themselves and the subject to
play with. The subject was only permitted to have one toy on the table at a time,

but the subject could select a different toy at any time. During snack segments, the
examiner presented two clear containers with different snacks, and the subject
selected which snack they would like. Children were given small portions of snack
in order to create opportunities for additional requesting. The BOSCC is designed
to measure change over time, and its inclusion in our dataset serves to increase the
diversity of the gaze behavior contexts.

Participants. A total of 66 children (55 male) who were suspected of having ASD
were recruited at CADB and 58 typically developing (TD) children (36 male) were
recruited at Georgia Tech to participate in a study designed to validate the feasi-
bility of using PoV glasses to capture gaze behavior in young children
(18–60 months, M= 36.48 months). Subjects who were suspected of having ASD
were evaluated with the Autism Diagnostic Observation Schedule (ADOS-2)55. TD
subjects were screened for developmental delays with the CSBS-DP56 or M-
CHAT57. Three TD subjects were excluded from all analyses due to technical
issues. All subjects completed both the ESCS and the BOSCC in randomized order,
regardless of their diagnostic status. A subset of subjects (n= 14) completed a
follow-up session within a year of their first visit, and another subset (n= 27)
completed an additional BOSCC with their parent as the examiner. Eight subjects
completed a second parent-led BOSCC at their follow-up session. (Additional
follow-up or parent-led BOSCCs were administered as part of a pilot data col-
lection for another project and we chose to include these data in our analysis to
have a wider variety of contexts from which we have sampled children’s gaze
behavior.) In total, the number of sessions is 167. All subjects in the young children
sample, regardless of diagnostic status, were utilized in training and validating the
eye contact model. Thus, the Young Children dataset consists of 66 ASD and 55
TD children (see Table 1, columns 2 and 4, for detailed demographic information).

Three subjects scored in the low range of concern for ASD and one subject did
not complete the ADOS-2 and these four subjects were not included in analyses
comparing ASD to TD groups. Three TD subjects were excluded from analyses
comparing across groups because of concern for developmental delay.

The BOSCC social affect scores are only available for the 25 minimally verbal
subjects within ASD group as they are considered appropriate for scoring54.

Video coding of eye contact. Mangold International’s INTERACT video anno-
tation software (https://www.mangold-international.com) was used by coders to
flag frame-level onsets and offsets of eye contact during ESCS and BOSCC pro-
tocols. The ESCS sessions from 10 subjects (5 TD, 5 ASD) were annotated by 8
independent raters to establish reliability (mean κ= 0.886). In addition, 3 raters (1
rater in common with the first group) annotated the BOSCC videos from 8 subjects
(4 TD, 4 ASD), in order to test reliability on a different play protocol (mean
κ= 0.903). The remaining ESCS and BOSCC sessions were annotated by single
raters. The video segments from the 10 ESCS and 8 BOSCC sessions which were
annotated by multiple raters constitute the validation set, which was used to test
generalization performance of the gaze detection model after training. The
remaining single-rater sessions from 103 subjects comprise the training set. In our
dataset, eye contact was annotated for both BOSCC and ESCS assessments for
45 subjects. For the remaining 76 subjects, eye contact annotations were only
completed for one of the assessments (n= 47 for the ESCS; n= 29 for the BOSCC)
due to the time-consuming nature of the manual coding process. The validation set
has no overlap with the training set and is representative of the total sample in
terms of age, race, diagnosis, gender, and autism severity. Note that we have shown
in prior work that human coding of eye contact from PoV video can be achieved
with greater reliability than from a standard video recorder22, thus validating our
data annotation approach. This prior work also demonstrated that wearing the
glasses did not impact the frequency of eye contact bids in a sample of 2-to-4-year-
olds.

Data preparation. PoV video frames were decoded at 30 frames per second
(capture rate) and saved to disk. In each frame, the subject’s face was detected and
recognized following the procedure from ref. 24. In the training set, each frame is
labeled by a single rater, with 1 for eye contact and 0 otherwise, which was
abstracted from the onset–offset coding. In the validation set, each frame has
annotations from multiple raters and the majority vote is used as the ground truth
label. The datasets consist of 4,339,879 frames (281,152 with eye contact) for
training and 353,924 frames (25,112 with eye contact) for validation.

Training algorithm. We used a deep convolutional neural network (CNN) with a
ResNet-50 backbone architecture58 as our classifier model (see Fig. 5). ResNet,
short for residual network, is a popular deep neural network type, and the 50 in
ResNet-50 refers to the number of layers it has. The inputs consist of cropped face
regions, resized to 224 × 224 pixels. We used a two-stage training process to sup-
port task transfer learning. In the first stage, training on three public datasets
enables the model to learn the relationship between head pose and eye gaze
direction as follows: the model is trained to regress the 3D gaze direction based on
MPIIFaceGaze47 and EYEDIAP59 datasets and 3D head pose with the SynHead60

dataset, using the poss regression method of ref. 61. Convergence is defined as
reaching <6° mean absolute error on gaze angle and head pose. The model is then
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fine-tuned using our training dataset, in order to learn the condition of eye contact
and capture the details of children’s facial appearance.

Parameters are fine-tuned across the last two blocks of the ResNet layers, using
cross entropy loss with a re-weighting factor of 0.1 which is multiplied by the loss
of the over-represented class in order to compensate for the class imbalance (eye
contact presence vs. absence ratio) in our dataset. Backpropagation with a learning
rate of 0.005 under Adam optimization is used to update network weights for every
mini-batch of 256 samples until it has seen three epochs of training data with
augmentation. Data augmentation during training consists of a combination of
horizontal flip, color jitter (brightness, contrast, saturation ≤±20%), blur (Gaussian
kernel size ≤0.6), and face bounding box re-scale (≤+20%), each of which takes
effect at a probability of 0.5. Augmentation parameters are uniformly sampled
within the given range. We use PyTorch deep learning framework to train and
evaluate our network.

Note that our prior work24 used an architecture that incorporated multi-task
learning, a machine learning approach in which multiple learning tasks are solved
at the same time, by forcing the network to predict the head pose and the eye
contact label during training. A finding from this work is that the transfer learning
approach is more effective.

Evaluation overview. We performed three experiments to evaluate the perfor-
mance of our approach. The first experiment evaluates the per frame prediction
accuracy of our method. The second experiment evaluates the inter-rater reliability
of the deep learning model with respect to a set of human raters. The third
experiment tests whether the direct application of our eye contact detector can
replicate findings about eye contact behavior in two previously-reported studies
which used manual coding. These experiments provide three sources of converging
evidence for our primary hypothesis: That automatic detection of eye contact via a
deep learning classifier yields performance which is equivalent to the accuracy of
human coders, making automatic video coding viable for research studies in social
communication. Each analysis uses a different subset of subjects as it is considered
appropriate based on the availability of diagnostic category and assessment scores,
as shown in Supplementary Fig. 4.

Evaluation for frame-level accuracy. We compute the precision–recall (PR) curve
on the validation dataset as a function of the classification threshold, using the
majority vote of the human coders as the ground truth. We summarize the PR
curve using maximum F1 score and average precision which are defined as follows:

Precision ¼ Truepositive
Truepositive þ falsepositive

; ð3Þ

Recall ¼ Truepositive
Truepositiveþ falsenegative

; ð4Þ

where ‘true positive’ is the number of correctly predicted eye contact, ‘false positive’
is the number of incorrectly predicted non eye contact, ‘false negative’ is the
number of incorrectly predicted eye contact.

As the neural network outputs a score S per frame (taken from the softmax
layer), a PR curve is generated by choosing a fixed threshold score t such that the
prediction ŷ for each image is defined as ŷ ¼ S≥ t, then sweeping t in the interval
0–1. Due to the imbalance between the two classes (eye contact vs. other) in our
dataset, PR curve is better suited for evaluation than receiver operating
characteristic, as PR does not take into account abundant true negatives.

Maximum F1 score ¼ 2 ´ Pt ´Rt
PtþRt

and average precision (AP)= ∑t(Rt− Rt−1) × Pt
are also reported as summary statistics for PR curve (Pt and Rt are the precision
and recall, respectively, at threshold t).

Evaluation for reliability with human raters. For this evaluation, we threshold
the model’s output and perform post-processing to predict an eye contact label for
each frame of an input video sequence. We treat the learned model as an additional
(automated) video coder, and compute the agreement between the algorithm and
the human raters on the validation dataset. We use Cohen’s kappa score62 to
measure the inter-rater reliability between the model and each of the raters, and
between all pairs of raters, where an average kappa score greater than 0.8 is usually
considered to be sufficient to establish reliability for a group of raters.

In addition, we use two one-sided tests (TOST)63 to statistically test the
hypothesis of equivalence between the human annotator group and the automatic
coding algorithm. In TOST, the null hypothesis is a sample mean difference greater
than Δ, and the alternative hypothesis is equivalence between the classes:

H0 : mhd �mhh <�Δ or mhd �mhh >Δ; ð5Þ

H1 : �Δ<mhd �mhh <Δ; ð6Þ
where mhd is the mean of kappa scores of all human–detector pairs, mhh is the
mean of Cohen’s kappa scores between all human pairs, and Δ is the equivalence
boundary.

Replication of prior studies. Our final evaluation assesses the impact of replacing
human coding with computer coding of eye contact in prior observational studies.
We repeat the data analysis for the two studies described in refs. 23,30, using eye
contact statistics obtained from applying our automated method to the original
video files, as an alternative to the manual coding originally performed by the
authors. For both studies, we compute eye contact frequency (eye contact event
counts per minute) and duration rate (eye contact duration divided by the
administration time) using the algorithm’s output, and repeat the statistical tests as
in the original analyses.

The study in ref. 30 examined differences in eye contact rates between ASD and
TD young children during the toy–spectacle tasks of the ESCS in consideration of
temporal-contextual factors such as activation and possession of the toy. Samples
used in training the eye contact model overlap partially with the samples used in
ref. 30. In order to eliminate any potential bias, we removed the overlapping
subjects (n= 47) from the training set and retrained the eye contact model on
56 subjects (instead of 103) for use in this experiment.

The study in ref. 23 investigated increased eye contact in individuals with ASD
during conversation as compared to play in the BOSCC protocol in an additional group
of 15 older children and adolescents with ASD (three females, 5–13 years,M= 8 years).
Table 1, last column, provides the detailed demographic information. We reproduce the
analysis of ‘Sample 2’ from ref. 23 only, as ‘Sample 1’ was not available.

Correlation analysis. We performed an additional experiment to examine the
correlation between automatically measured eye contact statistics (frequency and
duration rate) and symptom severity, using the sample of ASD subjects aged up to
60 months. Given the importance of eye contact for overall social communication
skills in young children5–7, it was expected that frequency and duration of eye
contact would demonstrate a negative correlation with social impairment among
the autism subjects. Note that some parts of the videos in our data were not
manually annotated for eye contact, and using automatically measured eye contact
statistics is a scalable and favorable way of testing this hypothesis.

Symptom severity was assessed using two social affect scores derived from the
ADOS and the BOSCC. First, the ADOS Calibrated Severity Scores for Social Affect
(ADOS CSS SA) were computed from children’s ADOS64 assessments. In addition,
the BOSCC Social Affect (BOSCC SA) scores were coded for 25 subjects who were
minimally verbal54. These were calculated by summing scores on items 1–9 for
each of the two BOSCC segments and averaging the totals. For both scores, higher
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AvgPool

Fully connected

Softmax

Residual

x2 x3 x5 x2

Point-of-view image Cropped face Deep convolutional neural network (ResNet 50) Detection of eye contact

Fig. 5 Deep neural network layout. Given a frame extracted from a point-of-view camera, the subject’s face is automatically detected and cropped as an
input to the deep neural networks. A deep neural network is used to compute the features from facial image via a series of convolutions. At the end of the
network, features are combined through average pooling and fully connected layers, and the softmax operation produces the final eye contact score. Using
this score, algorithm can decide if the input face is an eye contact. The authors have obtained consent to publish the sample picture from the study
participants.
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numbers indicate greater severity of social impairment. BOSCC SA scores for the
remaining 41 subjects in the ASD group were not assigned as the subjects had more
verbal language than the minimally verbal level for which the BOSCC is validated,
as indicated by the subject having completed an ADOS-2 module 2 or 3, or
speaking in flexible phrases or sentences during the BOSCC.

Pearson correlation coefficients were computed between ADOS CSS SA and the
automated eye contact measures (frequency and duration rate) from the ESCS
segment and the BOSCC segment (separately). In addition, correlations were
computed between the BOSCC SA and the automated eye contact measures
(frequency and duration rate) from the BOSCC segment.

All subjects considered for correlation analysis are a subset of ASD young
children samples. Since they were part of the training set, we use the reduced model
that is used for reproducibility analysis for30 that is trained with 56 subjects, in
order to minimize bias. We avoid dropping additional subjects further from this as
it would cause shrinking the training set too much and degrade its performance. As
a result, subjects included in correlation analysis are partly represented in the
sample that the model was trained with. Namely, there are n= 58 (39 trained)
subjects for ADOS CSS SA correlation during the BOSCC, n= 45 (25 trained)
subjects for ADOS CSS SA correlation during the ESCS, and n= 25 (16 trained) for
BOSCC SA correlation analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Three datasets that were used in the first stage of training are publicly available;
MPIIFaceGaze: https://www.mpi-inf.mpg.de/departments/computer-vision-and-
machine-learning/research/gaze-based-human-computer-interaction/its-written-all-
over-your-face-full-face-appearance-based-gaze-estimation. EYEDIAP: https://www.
idiap.ch/dataset/eyediap. SynHead: https://research.nvidia.com/publication/dynamic-
facial-analysis-bayesian-filtering-recurrent-neural-networks. The IRB protocol for this
project prohibits the release of the eye contact dataset itself.

Code availability
The deep learning model trained for this manuscript and the associated test code can be
found at https://github.com/rehg-lab/eye-contact-cnn.
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